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the trace was comipared with the sum of the computed eigenvalues, and found to 
differ by only a few units in the last place. 

A copy of the B 5000 program and its output have been deposited in the UMT 
file. 
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Differential Approximation Applied to the 
Solution of Convolution Equations 

By Richard Bellman, Robert Kalaba and Bella Kotkin 

1. Introduction. In the course of constructing some mathematical models of 
physiological processes connected with cancer chemotherapy [1], we have encoun- 
tered functional equations containing convolution terms. Equations of this type 
are unpleasant computationally because of the storage, and thus time, requirements 
for solution. In some cases, these storage requirements could exceed present capabili- 
ties and thus seriously impede numerical solution. 

We wish to present a new approach to this problem using the technique of 
differential approximation. To illustrate the method, we shall consider the equation 

(1-l) u(t) = f(t) + ft (tg-)2u (s) ds. 

2. Polynomial Approximation and Extensions. A classical problem, which owes 
its inception to a control process associated with the Watt steam engine (see [2]), 
is that of obtaining a polynomial which deviates the least from a given function, 
where the deviation is measured by an assigned norm. 

If we recoginize that a polynomial pn (t) ao + alt + * + a,ntn is a solution of 
the linear differential equation 

( 2.1 ) dt~~~~~~d(n+l) -? (2.1) 0 

then we see immediately that this problem is a particular case of the more general 
problem of finding an equation 

(2.2) d(n+l)? + a(t) d ?u+ + an(t)u = O 
dt(-+') dtn 
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whose solution approximates to the given function in an optimal fashion. In the 
particular case where the ai(t) are constants, this is equivalent to asking for approxi- 
mation by an exponential polynomial 

N 

(2.3) Pn(t) E qk(t)e. 
k=U 

This problem is in turn a special case of the general problem of approximating 
to a given function f( t) by means of the solution of a nonlinear differential equation 

d (n+l)U n 
(2.4) dt(n+l) = g(u, u , , u ) 

rThis is a meaningful approximation problem for arbitrary n, since an arbitrary 
analytic function will not in general satisfy a nonlinear differential equation of any 
finite order; e.g., 1(t). 

This problem arises in the study of design and control and has an important 
role in the study of adaptive processes (see [3], [4]). We will discuss these matters 
elsewhere. 

3. Linear Differential Approximation. We wish to consider the problem of ap- 
proximating to a given function f(t) by means of an exponelntial polynomial of the 
type appearing in (2.3), for reasons we shall describe below. Since a direct approach 
to this problem possesses well-known pitfalls (see Lanezos [5]), we shall pursue a 
different path. 

First of all, we shall suppose that the given function f(t) satisfies an ordinary 
differential equation 
(3.1) ff7l h h(f f', . .. ,f(mfi-), t), 

since this is quite often the case in applications. 
Secondly, we shall determine ani approximating linear differential equation with 

constant coefficients 

(3.2) f(N) + aif(N 
1) + .. + aNf = 0, 

by asking that the coefficients as be chosen so as to minimize the functional 
T 

(3.3) j (f(N) + a,f + * + a f)2 dt, 

where f is determined by (3.1). 
The approximation to f will then be the solution of the linear differential 

equation 

(3.4) u(N) + aiu(N-1) + + aNu=O, 

with initial conditions which will be determined in a fashion discussed below. 

4. Computational Aspects. The minimization of the expression in (3.3) leads to 
the system of N simultaneous linear equations 

(4.1) f f(j)f(N)dt + ai ( f (Ni)f () dt) = 0, j = 1, 2, .... N. 
o i_1 \o/ 
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For moderate values of N, i.e., N < 20, the computational solution provides no 
difficulty once we have evaluated the integrals appearing as coefficients. We could, 
if we so desired, integrate by parts and reduce the evaluation of these integrals to 
the evaluation of the integrals fT (f(i) )2 dt. For moderate size N, however, it is more 
convenient to proceed directly as follows. 

Introduce new variables uij , i, j = 0, 1, , N, defined by the equations 

(4.2) du., = f(Ni)f v) uij(O) = 0, 
dt 

and solve these equations simultaneously with the original equation for f, namely, 

(4.3) f((m) = h(f, f' ... If(rn1), t). 

5. Solution of Approximate Linear Equation. Having determined the coefficients 
ai by means of the foregoing procedures, we now wish to determine the function 
u(t) as a solution of (3.4). A first approach is to use the initial values 

(5.1) UU)(i,0) = f ") (0)) i-O,0 1, 2, N-1 

and indeed this is what we do below with some success. 
In general, however, we would proceed in the following fashion. Let 

U1, ?U2, * * IN be the N principal solutions of (3.4), the solutions determined by 
the condition that the matrix whose columns are (u1 (0), u1 (0), ... , uicff (0)) 
etc., is the identity matrix. 

Every solution can then be written in the form 
N 

(5.2) u(t) = Zciui, 

where the ci are scalars. Let us choose these ci so as to minimize the expression 
T / N \2 

(5.3) jI (f- N dt. 

The equations for the ci are 
T N T 

(5.4) Ifui dt - E C uiuj dt = O, i = 1,2, .. ,N. 
o T Nj=l 

To determine the various integrals, we introduce the variables vi and wij by means 
of the relations 

dvi 
fui, Vi(O)-O,0 

dvt 

(5.5) 

dt1= uiuj Wij(O) = 0, dt 

adjoin the equations for the ui (equation (3.4) with appropriate boundary con- 
ditions) and the equation for f, and integrate. 

6. An Example. Let us now discuss the equation of renewal type given in (1.1). 
Taking 0 ? t < 1, we obtain as a third-order differential approximation to the 
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function e-t the solution of the equation 

(6.1) (3) + 2.740299u(2) + 7.9511452u(1) + 5.7636455u = 0. 

Using the initial values obtained from et2, namely 

(6.2) u(0) = 1, u'(0) = 0, u"(0) = -2, 

we found such excellent agreement with the values of eGt over 0 ? t < 1 that there 
was no need to follow the procedure of Section 5. 

Consider the expression 

(6.3) w(t) = f k(t - s)u(s) ds. 

Differentiating repeatedly, and adding with the coefficients obtained above, we 
have 

w(3) + 2.740299w(2) + 7.9511452w(1) + 5.7636455w 

= k(O)u"(t) + k'(O)u'(t) + k"(O)u(t) 

(6.4) + 2.740299[k(O)u'(t) + k'(O)u(t)] + 7.9511452k(0)u(t) 
t 

+ f u(s)[k"'(t - s) + 2.740299k'"(t - s) 

+ 7.9511452k'(t - s) + 5.7636455k(t - s)] ds. 

Taking k(t) = e and assuming that the term under the integral sign is negligible, 
we obtain a third-order linear differential equation for w = u-f. 

Let us take f = 2-J e ds, so that the equation 
t t 

(6.5) u(t) - 1 - f e ds + e (t S) 2u(s) ds 

has the solution u(t) = 1. 
The function f(t) as given above satisfies the linear differential equation 

(6.6) f(3) + 2tf(2) + 2f '1 = 0, 

with f(0) = 1,f (0) = -1, f" (0) = 0. 
Solving (6.6) together with the approximate linear equation for u obtained 

from (6.4), we obtain the following values for u(t): 

t ~~~~u(t) u' (t) u"l(t) 

0.1 0.999999 
0.2 0.999999 -0.14. X 10- -0.148 X 10-2 
0.3 0.999969 
0.4 0.999937 ... 
0.5 0.999909 ... 
0.6 0.999898 ... 
0.7 0.999909 0.229 X 10- 0 . 174 X 10-3 

0.8 0.999938 0.330 X 10-3 0. 167 X 10- 3 

0.9 0.999970 0.272 X 10-3 -0.135 X 10-2 
1.0 0.999989 0.919 X 10-4 -0.189 X 102 
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As we can see, the agreement with the desired value, u(t) = 1, is excellent. 

7. Discussion. Consider a system of renewal-type equations, given, say, in 
matrix form: 

t 

(7.1) X(t) = F(t) + f K(t - s)X(s) ds. 

Equations of this type arise naturally in the study of multidimensional branching 
processes; see [6], [7]. 

If X(t) is a 5 X 5 matrix, we are required to store 25 functions (i.e., the elements 
xij(t), i, j = 1, 2, *.. , 5) if we proceed in the usual fashion. If high order accuracy 
were required-say, intervals of 1Oj over 0 < t < 5-we would find that rapid- 
access storage capacity would be exceeded. 

On the other hand, if we use the foregoing technique, differential approximation 
of order 5 would lead to the task of solving about 250 simultaneous differential 
equations plus those required to determine F(t). This is a simple matter for a 
modern computer. Furthermore, it is clear that we could use an approximation of 
order 10 without coming close to the storage capacity. 
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On the Numerical Solution of Equations of 
the Abel Type 

By Henry E. Fettis 

The integral equation known as Abel's has the general form 

x 

(1) f(x) = gq(t)(x - t)- dt 

where a is a real number, and 

O < a < 1. 
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